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Simplest Momentum Conservation Equation
for a Magnetically Confined Plasma

Vp—leBzo
C
B-Vy=0
B-Vp=0=p=p(y)
p=n(T,+T,)
B-VI,=0=T,+T,(v)

(large longitudinal electron thermal conductivity)
1
I =1, T=lre1)=1(p)

then n=n(y).

Thus surfaces of constant n should overlap with surfaces of constant 7.
Contradicted by the experiments on axisymmetric plasmas with
non-circular cross sections.



Axisymmetric Configurations (Magnetically Confined Plasmas)

BZ%I:VI//X6¢+I(I//)e¢i|

1 1
F, = ;JXB = {(AW)Vy +1VI}

F,,=0
c
and J =— A,
o= " agr Y
Then _ 12 A*l//+ldl :dp
AR dy | dy

(so called G-S i here A =Ri(li )+a—2
so called G-S equation), where Y= R\ RoOR 32 v.

On the other hand, under stationary conditions,

VO
J =0 E, =0, ——,
0 = %1% = %15 p

where V, is the “loop voltage”. 3



Considering toroidal configurations with large aspect ratios and
circular cross sections, the plasma longitudinal conductivity in trapped
particle regimes is, for B, > B,

0

r % 3
O, = Gﬁl 1—1.95(—) , where Gﬁloc Teé.

! T’
Then can J, o« — Ay be proportional to — ‘ ?
‘R R1-195(r/R,)"
17,
- >

No evidence for this (as far as I know).



Nonclassical Transport and the “Principle of Profile Consistency”™

Starting from the experimental observation of temporature and density profiles in mag-
netically conflimed plasmas and analyzing the consistency conditions for the plasma-column
oquilibrium, analytical expressions for the nonclassical energy and particle flows are
obtained, and an Interpretation of existing experiments is provided

‘The problem of understanding the natuse of the particle and energy transport
processes in magnetically confined plasmas has attracted considerable theo-
retical and experimental effort in recent years, In fact the theoretical effort has
been mostly devoted to numerical simulation of the existing experimental
observations, while a relutively simple analytical formulstion of this problem
would be highly desirable, In this spirit we present a set of eriteris that appear 1o
lead to a consistent description of both the electron thermal-energy transport
and the particle transport, We label this set of criteria as the “principle of
profile consistency.™ In fact, this is based on assuming that the observed flows of
clectron thermal energy and particles are those needed to reach a consistent st
of radial profiles for the current density, the particle temperatures and the
plasma density, while satisfying the equilibrium conditions for the considered
plasma column. In addition, we start from the experimental obssrvation that the
electron temperature takes on a diffusiondike profile, in impurity-free plasmas,
that is

: r
Te ™ Tepexp (‘01 ey )- m

a being the plasma column radius and aq a weak function of rfa. Then, to the
extent that the longitudinal resistivity m| is classical, the current density profile
is of the form

q,r
Jy = Jaexp (-on - ~,). (2)

qo7
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This is where a self organization
process has to come in, as the
experimental evidence for the
existence of a radial “profile
consistency” (B.C., 1980) of the
electron temperature suggests.



Brief Comments on Pulsar Models

In dealing with axisymmetric pulsar magnetospheres we have to take

B:%I:Vlllxe¢+l(l//, z)e, |

As poloidal currents producing slowing down [a)o =W, (t)] have to be present.
That is, / is not a function of ¥ only and is an odd function. The relevant
magnetic configuration equation was derived originally in 1971 (published

in Ap. J., 1973).

In this case the magnetic force F,, is given by

1 |
F, = ZJXB = {(AW)Vy +IVI-(VIxVy)}

and has a toroidal component.
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ABSTRACT

It is shown that the magnetic configuration in the neighborhood of a collapsed star with
parameters appropeiate for models of X-ray stars or pulsars is nearly force-free, with (V x B)/B
nonconstant. In the case where the mwlcuc axis eomades with the rotlnon IXIS. a differential

for the magnetic surfaces is derived. A pmper bl i is used to
obtain a slxmﬁcanl uympto(nc solution of this equation and to derive explicit expressions for the
relevant

Subject headings: collapsed stars — ic fields — p — X-ray

1. INTRODUCTION

We consider a rotating collapsed (neutron) star with a magnetic-field configuration
that is symmetric about its axis of rotation. We point out that, given the expected
high value of the magnetic field, in the vicinity of the polar caps the current flow is
nearly parallel to the magnetic field, J ~ «B; hence the field is approximately force-
free. In addition, by considering the nature of the clectromotive force driving this
current and the resultant current flow, one must conclude that « is not constant. For
this reason the treatment of force-free ficld configurations which are found in the
literature (Liist and Schliiter 1954; Chandrasekhar 1956; Chandrasekhar and Kendall
1957; Woltjer 1958; Morikawa 1969) cannot be utilized.

We therefore resort to an asymptotic solution of the general force-free field equa-
tions, valid in the vicinity of the rotation axis. In particular we refer, as in the analysis
of the equilibrium of laboratory plasmas (Solovev and Shafranov 1970), to the
magnetic surfaces of the considered configuration. These surfaces are labeled by the
streaming function ¥ which satisfies the equation B-V¥ = 0. Our solution enables us
to give explicit expressions for the magnetic surfaces and field lines, and to formulate
a precise criterion to establish limits for the current which flows through the star
surface. Here we summarize our analysis, while a more detailed treatment of the same
problem will be published elsewhere (Cohen, Coppi, and Treves 1972).

We assume that the collapsed star under consideration is surrounded by a plasma-
sphere and distinguish two regions: an active region near the symmetry axis, where
poloidal currents can flow, and an inactive equatorial region where the plasma co-
rotates with the star. The existence of poloidal currents in the active region results
from slippage of the plasma with respect to the magnetic field; this slippage can be
associated with the finite plasma resistivity and with relativistic cffects and produces
an electromotive force. The two regions are separated by the magnetic surface which
intersects the star at colatitude 0,; if we assume that the poloidal magnetic field is
dipolar, we find that 8, is of order (wgafc)'’® where wy is the angular velocity of the
star and a its radius.

We consider a region well inside the speed-of-light cylinder and write the equation of
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which is independent of r. The condition that the first, second, and fourth terms of
equation (13) be dominated by (4x/F*¥ )Y, gives, respectively,

sinfl« 8, sinff«2, sinflx?%,
which together with expression (23) may be written
sin? 0 « min [(W./&y)*?, %] . (24)
Our solution is valid, then, as long as both the above condition and the force-free
field approximation hold.

IV. MAGNETIC SURFACES AND FIELD LINES

A point (r, 8, ¢) is related to a point (a, 8,, &,) at the surface of the star on the same
magnetic surface by the equation ¥(r, ) = Y(a, 6,), or equivalently, by ¥(¢, x) =
W(r = 1, xo) where yo = (sin? 8y)/'Y'.. One may use the latter form of this equation to
obtain an expression for the magnetic surfaces in polar coordinates. Writing ‘F(7, x) =
YN0 4 W = W + WOF, y), the preceding equation gives

(x = x0) = [¥00F = 1, xo) = ¥OF 1Y

implying that y — x, is of order (‘VV/¥,) < (¥'V/¥?). We may obtain an expression
for (x — xo) correct to first order in (4**/¥,) by simply replacing ¥"*\7, ) by
W7, xo) in the above equation. Assuming that the separated form (16) is applicable,
so that V'™ = —(#*%¥/4)¢(x), the result may be expressed in the form

sin® @
F

w sin? B + 3V (o) (F° — 1). (25)

For a current distribution corresponding to & chosen as in equation (11), the coefficient
of (7* — 1) is positive for all magnetic surfaces in the range of our approximations;
0 increases with r along a magnetic surface faster than for a dipole field. Since field

~

Fi1G. 1.—Sketch of magnetic surfaces and field lines
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The magnetic configuration in the plasma-sphere surrounding a neutron star is described
in terms of a model equation that is constructed to be valid from the surface of the star to
distances of the order of the light speed cylinder and beyond. Significant asymptotic solu-
tions of this equation, that are valid in limited regions around the star, are presented.

1. INTRODUCTION

One of the problems that have to be dealt with when considering possible models
for pulsars concerns the macroscopic properties of the plasma that can surround a
rotating neutron star. The high magnetic field that is associated with this type of star
and the relatively high frequency of rotation that is appropriate for pulsar models
are the most important parameters determining the nature of the plasma-sphere
surrounding the star.

In the following sections we give an analytical procedure, for a fluid-like description
of this plasma-sphere, that leads to solve an equation in the scalar labeling the (mag-
netic) surfaces of the relevant magnetic configuration. A number of important effects,
that it is necessary to consider when analyzing the possible types of plasma flow and
magnetic field configurations at distances of the order of or larger than the radius
of the “light-speed-cylinder,” are discussed and taken into account in the above
mentioned magnetic equation. These include the fact that the plasma does not strictly
corotate with the star and that its motion is not “frozen-in” everywhere with the
magnetic field, the influence of the gravitational and of the centrifugal forces, and the
effects of a “braking” force on the plasma resulting from the emission of radiation and
particles. Moreover, the braking mechanism has to satisfy the condition that the star
rate of energy loss be equal to the rate of angular momentum loss times the frequency
of rotation. For the sake of simplicity, a two dimensional model is analyzed assuming
that the axis of rotation coincides with that of the magnetic field configuration
(Goldreich and Julian, 1969). This magnetic configuration depends upon two
expansion parameters which are related to the portion of star surface from which
poloidal currents are drawn, and to the ratio between the toroidal and the poloidal
magnetic field at the star surface. An estimate of these parameters can be obtained
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ROTATING NEUTRON STAR 101
respectively, where 8, ~ §}* as follows from Eq. (3.1). Therefore,
GO0 <P <d, and® - 0ifd, < (3.4)

In addition, on cach of the polar caps @ is assumed 1o be a function of ¢ only. as
there is no braking force close to the star. Two regions around the star are thus
postulated, an active and an inactive one (see Fig. 1). The active region extends from
the polar caps (r == a, & < ) to a “critical surface™ beyond which the motion of
the plasma is no longer tied to the star magnetic field. Current is drawn from the polar
caps along constant @-surfaces which, in the neighborhood of the star, comeide with
magnetic surfaces. The inactive region is assumed to be bounded by the magnetic
surface ¢ b, that is tangent to the critical surface. In addition. it is reasonable to
assume that inside the inactive region there is no poloidal current so that the magnetic
configuration, in a region relatively close to the star, is that of a dipole corotating
with it. The braking of the plasma, which is connected with the rate of energy and

‘x |-~
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Fig. 1a, Current distribtion in the ing star sph The star is indicated by the

small circle around the origin. The light broken curve shows the boundary between the active and
the inactive region while the straight broken line separates the region of positive charge (+) from
the region of negative charge () close 10 the star, The current flow is indicated by heavy lines, solid
for R < R, and broken for R = R, where the circuit closes. The ori ion of the idal magnetic
field in the active region is symbolized by crossed @ and dotted © small circles. The dipole magnetic
moment and the angular velocity of the star have been assumed 1o point in the same direction,
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Two-dimensional Plasma and
Field Configurations Around Black Holes

General Relativity corrections are neglected at first. The plasma is rotating
around a central object with a velocity

V, =RQ(R, z)
where

Q(R, 2)=Q, (R)+82(R, z) ,

1
Q = (GM /R’ )A is the Keplerian frequency for the central object of mass M,

and whose gravity is prevalent (that 1s, the plasma self gravity can be neglected)

and |6Q|/Q, <1. We assume, for simplicity that / =1(y). Then

1 dl

as in the case considered earlier of magnetically confined plasmas. 11



In the case that we consider, the total momentum conservation equation, that
includes both the toroidal rotation velocity and the effect of the gravitational field of

the a central object, 1s

1
~p(Q°Re, +Vd;)=-Vp+—J xB (1)
C
where
M. 2 M
O, = GM, , VCI)Gz—V—"(eR+£eZ : V,st “=Q'R’.
R + 7 R R R

Then we have

B-Vp=pR(Q* -Q})B, —zpQ; B, #0

and if we apply the V X operator on Eq. (I) we obtain

12



V x (pV(I)G + pQZReR)

{ap(mz 8;1; j+pRZQaQ— op 8(I>G}

dz dz OR 0z

1 ) dl
= —— | Aw+I1— +V(A Vv.
47tR2{ R( ¥ dt/f]eR ( *w)}( v

This can be rewritten as

0 dp 3z 8pj
2Q,R—(poQ Qz ——
0z (p&2)+2 (8]3 2 R 0z

12 dl | o oy |0 Yy .
 4nR’ {[R(A*WHW] E)R(A*w)} 0z +{8Z(A*w)} 8R} )

and we call it the “Master Equation”.

13



We note that the vertical momentum conservation equation is, considering the

expression for Fj, given earlier,

0=-2 cpoy aw(A*vf”ﬂ]‘ (**)
<

Clearly, we have two equations, (*) and (**), which give v (R, z) and p(R, z)
for reasonable choices of the density p(R, z), the poloidal current function / (1// ),

and 8Q (v, ).

Is it possible to find profiles that are consistent with known thermal energy

balance equations?

14



In order to proceed further we consider a radial interval |R — R0| < R, around a

given radius R,. Then

dQ,
dR

+0Q2
R=R,

Q:Qk(Ro)'l'(R_Ro)

and we comply with the isorotation condition €2 =€ (1//) defining y_/y,, by

(R_Ro)dgk =Q; L
dR R=R, Yo
and v, /B, by
20rR =200 L2 Vi g2 W,
_ k o D >
R R=R, B, BR,

where Q2 =—-RdQ’/dR* =3Q; is considered to be the “driving factor” for the
2
v, /(B,R;)

onset of the magnetic configurations that are analyzed and

<.
15



On the other hand, for the configurations we shall consider

izi»l and 1£~A*l//.
OR dz R dy

In this case V* =09°/0R* +9°/9z° and the Master Equation reduces to

a%[ p(? —Qi)]+QizaiRp+ﬁ(BzszR ~B.V’B)=0,

that 1s independent of the toroidal field component.

In this connection we note that the derivation of t he Master Equation is

compatible with a pressure tensor of the form

P=p,I+piese,

16



Ring Sequence (Analytic solution, with P. Rebusco)

2
Sy o< N(R*)exp[— 212 j

2
C, = A—’; R = R-R,
AZ A,

: E, .
N(R*) =0,C,R, +sInR, + EstR*, £, gi

OCOR[OCOCg +(CO — l)cos R*]+[(xo (CO + 1)+ COS R*:lsinR* 3 sin” R,

CoOoR, +smmR, + % sin2R, 2 1+&,cosR,
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Axisymmetric Configuration with Toroidal Rotation
No gravity: Simplest Master “Equation”

0=—Vp+szReR+1JxB (1)
C
B-Vp=Q’pRB, (2)
e, Vx Eq. (1)
1
O:e¢-Vx(szReR)+Ee¢-VX(B-VB) 3)

Q=0(y) (4)
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